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Abstract: Consider a simple graph G without K5 component with vertex set V'
and edge set FE. A local antimagic labeling f of GG is a one-to-one mapping of
edges to distinct positive integers 1,2,...,|E| such that the weights of adjacent
vertices are distinct, where weight of a vertex is sum of labels assigned to the edges
incident to it. These weights of the vertex induced by local antimagic labeling
result in a proper vertex coloring of the graph G. The local antimagic chromatic
number of G, denoted as x;,(G), as the smallest number of distinct weights ob-
tained across all possible local antimagic labelings of G. In this paper, we explore
the local antimagic chromatic numbers of various classes of graphs, including the
union of certain graph families, the corona product of graphs, and the necklace
graph. In addition, we provide constructions for infinitely many graphs for which
X1a(G) equals the chromatic number y(G) of the graph.

Keywords and Phrases: Antimagic Graph, Local Antimagic Graph, Local An-
timagic Chromatic Number.
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1. Introduction

The coloring problems in Graph Theory are one of the oldest, most widely
known, and unsolved problems in mathematics. They have been the central re-
search topic for centuries among graph theorists. All the graphs considered through-
out this paper are simple graphs without the Ky component. For graph theoretic
terminology and notations, we refer to West [21]. The standard definitions can also
be seen in Pirzada [18].

Hartsfield and Ringel [10] introduced the concept of antimagic labeling of a
graph. Given a graph G = (V, E), let f : E — {1,2,...,|E|} be a bijection. For
cach vertex u € V, the weight of w induced by f is w(u) = Z f(uv). If the

weE
induced weights under f of any two vertices of G are distinct, then f is called

antimagic labeling of (G, and the graph G, which admits such labeling, is called an
antimagic graph.

Recently, Arumugam et al. [2] and Bensmail et al. [4] independently defined the
notion of local antimagic labeling of a graph that induces proper vertex coloring.
Arumugam et al. [2] studied the vertex coloring induced by local antimagic labeling.

An antimagic labeling f of a graph G is said to be local antimagic if the weights
induced by f of adjacent vertices are distinct. Local antimagic labeling naturally
induces a proper vertex coloring of a graph G. The local antimagic chromatic
number x;,(G) of a graph G is the minimum number of colors used over all colorings
of G induced by local antimagic labeling of G [2].

In [2], the authors calculated the local antimagic chromatic number of a few
families of graphs viz path, cycle, wheel, etc. Furthermore, they conjectured that
every graph other than Ky is local antimagic. Haslegrave [11] proved this conjecture.

We will use magic rectangle and magic rectangle sets to obtain local antimagic
labelings of some graphs. A magic rectangle M R(a,b) is an array whose entries
are {1,2,...,ab}, each appearing once, with all its row sums equal to a constant

= w and all its column sums equal to a constant o = @ Froncek [5, 6]
generalized the idea of magic squares to magic rectangle sets. A magic rectangle set
M = MRS(a,b;c) is a collection of ¢ arrays (a x b) whose entries are elements of
{1,2,...,abc}, each appearing once, with all row sums in every rectangle equals to

a constant p = w and all column sums in every rectangle equal to a constant
a(abc+1)
——.

In this paper, we investigate the local antimagic chromatic numbers of the union
of some families of graphs, the corona product of graphs, the necklace graph, and
we construct infinitely many graphs satisfying x;.(G) = x(G).

g =
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2. Known Results

The following century-old existing result due to Harmuth [8, 9] gives the nec-
essary and sufficient conditions for the existence of a magic rectangle of a given
order.

Theorem 2.1. [8, 9] A magic rectangle M R(a,b) ezists if and only if a,b > 1,
ab >4, and a = b(mod 2).
Froncek [5, 6] proved the existence of MRS(a, b; ¢).

Theorem 2.2. [6] Let a,b,c be positive integers such that 1 < a < b. Then a
magic rectangle set MRS(a,b; c) exists if and only if either a,b,c are all odd, or a
and b are both even, ¢ is arbitrary, and (a,b) # (2,2).

Theorem 2.3. [17] Let G be a graph having k pendants. If G is not Ko, then
X1a(G) > k + 1 and the bound is sharp.

Theorem 2.4. [3] Let G be a 4r-reqular graph, r > 1. Then for every positive
integer m, X1a(MG) < x1a(G).

Theorem 2.5. [3] Let G be a (4r + 2)-reqular graph, r > 0, containing a 2-
factor consisting only of even cycles. Then for every positive integer m, x;a(mG) <
X1a(G).

3. Local Antimagic Labeling of Union of Graphs

With the knowledge of local antimagic chromatic numbers of various classes of
well-known graphs, the researchers started calculating local antimagic chromatic
numbers for graphs obtained from known graphs [1, 12, 14, 20]. Handa [7] started
by investing the local antimagic chromatic number of the union of paths, cycles,
and complete bipartite graphs.

Baca et al. [3] investigated independently the local antimagic chromatic number
and upper bounds for the union of paths, the union of cycles, the union of trees,
and other graphs and their proof techniques are different from the proof techniques
given in this paper.

The union of two graphs G7 = (V4, E;) and Gy = (V,, E,) is the graph
G = (V, E) with vertex set V =1V UV, and edge set £ = E; U Ej.

Note that, if G1, G5, ..., G, are graphs such that x(G;) = x; then x(U, G;) =
max{x; : 1 < < n}. We have the following observation for the local antimagic
chromatic number.

Observation 1. For the graphs G, Ga, ..., Gy, X1.(G;) < Xla(UlSiSn G;) for each
7.
Theorem 3.1. The graph rP, is local antimagic with 3 < x;4(rP,) < 2r + 2.
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Proof. Let V(rP,) = {v/ : 0<j <r—1,0 <i<n—1} be the vertex set of rP,,
where for each j, vg, v{, e ,vi_l is a path. The lower bound is obvious from the
Observation 1. For the upper bound, we consider the following two cases.

Case 1: n is even.

We define edge labeling f: E — {1,2,...,nr — r} as follow:

(Ar ~D(n _41) — i if 7, 7 = 0(mod 2)
ol ) = In—1)+4t if i = 1(mod 2),j = 0(mod 2)
i Vi1 (jgl)( _1)+%+”T—1 if i = 0(mod 2),j = 1(mod 2)

(r_jfl)(n_l)_ﬂ_% 1fz]_1(m0d 2)

Then the induced vertex weights are as follows:

i#0andi#n—1,
@y [r=1 = j(mod 2)
T - 1) 11 ifi 2 j(mod 2).

Fori:=20 |
w(vl) = (r— %)(n —1) if j = 0(mod 2)
(n—l)(3—1)+g if j = 1(mod 2).

Fori=n—-1

Case 2: n is odd.

We define edge labeling f: E — {1,2,... ,nr —r} as follow:

i r(n—1) =228 i if § = 0(mod 2)

f('U@'UHl) = jn—1) + i+l ifi = 1(mod 2)

2 2 - '

The induced vertex weights are as follows: ¢ # 0 and 7 # n — 1,
w(vg) _ r(n — 1) lfz = O(mod 2)
r(n—1)+1 ifi=1(mod 2).

: =) p g =
w(v?):{( =55 f 0

(=) (G +1) ifi=n-—1
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Since we have 2r+2 distinct vertex weights, we conclude that x;,(rP,) < 2r+2.

Next, we investigate the local antimagic chromatic number for the union of
cycles. Let the vertex set of rC), be V(rC,) = vl :1<j<r, 0<i<n-1}
where for each j, v, vl ,vfb_l is a cycle of length n.
Lemma 3.2. Ifn is even then the graph rC, is local antimagic with xi,(rC,) = 3.
Proof. By Observation 1, x;,(C,) = 3 < x1a(rCy). So, it is sufficient to give
a local antimagic labeling that induces exactly 3 distinct weights. Consider the
following edge labeling f: E — {1,2,...,|E|} as

(G— 1) R
+ 2 + 1 if 7= 0(mod 2
Flel,) = { (mod 2)

rn— Y 21)" — 5t if i = 1(mod 2)
Then, the induced vertex weights are as follows
rn+ 1 if i = 1(mod 2),7 # 0
w(v]) = rn+2 if i =0(mod 2),7i #0
rn + 4%” ifi=20
Hence, f is local antimagic labeling, and it induces 3 weights. Therefore, x;,(rC,) <

3. Hence, x1,(rC,,) = 3 when n is even. This completes the proof.
The illustration of local antimagic labeling of 2C§ is shown in Figure 1.

o> T
3
( ) / |
NN/

Figure 1: A local antimagic labeling of 2Cys with x;,(2Cs) = 3

We give an upper bound on the local antimagic chromatic number for the union
of odd-length cycles.

Lemma 3.3. Ifn is odd then the graph rC, is local antimagic with x,(rCy) < r+2.
Proof. We define a local antimagic labeling f: E — {1,2,...,nr} as

nypigl if i = 0(mod 2),j = 0(mod 2)

i (r—2)mn—52 if i = 1(mod 2),j = 0(mod 2)
f(vzvz+1> j—1) i (n=1) g . _ _

(r—5=)n—35— 5= ifi=0(mod 2),j = I(mod 2)

(5h)n + &L 4 ot if i = 1(mod 2), j = 1(mod 2)
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Then, the induced vertex weights are as follows:

for i #£ 0
w(w!) = rn + 2 %fz:E]:(mod 2)
rn+1 if i #Z j(mod 2).
and for ¢ =0
: s if j = 0(mod 2
’LU("Uzq) = e 2j_1 3 1 j (mo )
2n(r — 45) — 5(n —1) if j = I(mod 2).

Since we have r + 2 distinct vertex weights, we conclude that y,,(rC,) < r+ 2.
From Lemmas 3.2 and 3.3, we have the following theorem.

Theorem 3.4. For n > 3 the local antimagic chromatic number 3 < x1,(rC,) <

T+ 2.
Let rK;, denotes r copies of a star K;,. Let u,us,...,u, be the r central
vertices of 7K1 ,. Let v;1,v;9,...,v;, be n pendant vertices adjacent to the central

vertex u;. Note that deg(w;) =n and |E(rK;,)| = rn.

Lemma 3.5. Forr > 1 and for even n the xi,(rKi,) =rn+ 1.
Proof. Define an edge labeling f: E — {1,2,...,rn} as:

— 1243 ifl1<5<2
f(uivij) = =15 ] : 1 _]_2.
m—(n—j)—@GE-1)5 if5+1<j5<n.
Therefore, the vertex weights are, w(v;;) = f(uv;;)) and w(u;) = §(mn + 1).
Since pendant vertices contribute rn distinct colors and each u;, 1 < ¢ < n, has the
same weight, the total number of distinct weights is rn + 1.

Lemma 3.6. For odd r > 1 and for odd n, x1(rK1,) =rn+ 1.

Proof. Since both r and n are odd, then by Theorem 2.1, there exists a magic
rectangle M R(n,r) of order n x r. Let C1,Cs,...,C, be the r columns of the
magic rectangle M R(n,r). Now we define a bijection f : E — {1,2,...,nr} as
f(u;v; ;) = Cij, where Cj; is the jth entry of the i column C;. The vertex weights
are, w(u;) = w, 1 <i < rand w(v;) = f(wv,;). Since pendant vertices
contribute rn distinct colors and each wu;,1 <7 < n has the same weight, the total

number of distinct weights are nr 4+ 1. Hence X, (rKi,) = nr + 1.

Lemma 3.7. For even r > 2 and n = 1(mod 2), x1a(rK1,) = nr + 2.
Proof. Since n = 1(mod 2) and r = 0(mod 2), then n = r — 1

= 1(mod 2).
Therefore by Theorem 2.1, there exists n x r — 1 magic rectangle M R(n,r

—1). Let
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Cy,Cy, ..., C._1 be the columns of M R(n,r—1). We label the edges in the first r—1
copies of K1, using respective columns Cy, Cs, ..., C,._;. Label the edges in the r*
copy of K, using the remaining set of labels {n(r — 1)+ 1,n(r — 1) +2,...,nr}.
Now Y 0 n(r—1)+i=n?*r—1)+ @ The pendant vertices of G induce

nr distinct weights. For the support vertices {uy,us,...,u,}, the weights are as
follows:
[ iti=1,2,...,r—1
wlu) = nQ(r—l)—i—w ifi=r

The total number of distinct weights under this labeling is nr + 2. Hence we
conclude that x;,(rKy,) = rn+ 2.
The illustration of the local antimagic coloring of 3K, 3 is shown in Figure 2.

/NN N

SUNCSUN SN

Figure 2: A local antimagic labeling of 3K 3 with x;,(3K13) =3 x 3+ 1.

The following theorem is evident from Lemmas 3.5, 3.6 and 3.7.

Theorem 3.8. rn + 1 < x,(rKy,) <rn+2.

The chromatic number of a complete graph on n vertices is n. It is easy to
observe and prove that x;,(K,) = n = x(K,). Moreover, with some conditions on
n, we have proved that x;,(mK,) = n.

Proposition 3.9. Forn > 3, x.(K,) = n.

Proof. Let V(K,) = {vi,vq,...,0,} and for each 1 < j < mand j < i <n
let e,_1 = v;v;. Define edge labeling f by f(e;) = (j — 1)n — @ + 1. It is
easy to observe that the weights, w(vy),...,w(v,) are in increasing order. Hence,
Xia(K») <n = x(K,). This proves the proposition.

Proposition 3.10. Forn > 3,n =1 or 3(mod 4), xio(mK,,) =

Proof. Let n > 3. If n = 1 (mod 4) then K, is 4r-regular for some r > 1 and
proof follows by Theorem 2.4. If n = 3 (mod 4) then K, is (4r + 2)-regular for
some r > 1 and it contains (n — 1) even spanning cycles. Hence, the proof follows
by Theorem 2.5.
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Theorem 3.11. Let x1o(rKom,) = 2 if positive integers m, n, r with m # n
satisfies one of the following conditions:

1. 1 <m <n withm and n both even, r > 1, and (m,n) # (2,2).
2. 1<m<n and m,n,r are all odd.

Proof. By Theorem 2.2 on the existence of magic rectangle sets, we have the
existence of MRS(m,n;r) for each of the above cases. Suppose there is a magic
rectangle set M RS(m,n;r). Let My, My, ..., M, denotes the r magic rectangles
in MRS(m,n;r). For 1 < k < r, define the vertex set of k" copy of K,,, as
V={vf,wf:1<i<n,1<j<m} where {v] :1<i<m}and{w}:1<i<n}
form the respective partite sets of k" copy of K, ..

Now for each k (1 < k < r) and each i (1 <4 < n) we label the edge set {vfw? :
1 < 7 < m} with the numbers in the ith row of M. Since the sum of elements
in any row or column in the magic rectangle set is equal, the resulting labelling
is a local antimagic that induces 2 different colors. Therefore, x;o(rKpm,) < 2.
Also, x(rKn) = 2. We conclude that x,(rK,,,,) = 2 whenever there exists a
MRS(m,n;r).

Figure 3 illustrates the local antimagic labeling of 3K 4.

23 21 19 17 15 13
1 3 5 7 9 11
12
/24 R 22\ /20 6 N\, 18\ /16 10 14\

Figure 3: A local antimagic labeling of 3K5 4 with x;,(3K24) = 2.

AN A A

€4 €x €6 €7

< T

€ €12 €11 €10 €9 €s

N % %

Figure 4: A u,v-necklace graph.



Local Antimagic Coloring of Some Graphs 9

An interesting class of graphs called a necklace graph has common vertices. A
u, v-necklace is a list of cycles C1, Cy, ..., C} such that u € C1, v € C}, consecutive
cycles share exactly one vertex, and non-consecutive cycles are disjoint (see Figure
4). The number of edges in all cycles is known as the length of the necklace. We
provide an upper bound for the local antimagic chromatic number for this class of
graph.

Theorem 3.12. Let G be an u,v-necklace on t > 2 cycles such that G has no
adjacent vertices of degree 4. Then x;.(G) < 6.

Proof. Let G be an u, v-necklace of length n, where C; be a cycle of length n; for
1 <4 < t. By the definition of GG, we have an Eulerian tour traversed clockwise
starting and ending at u. We enumerate the edges of GG as we follow the Eulerian
tour as shown in Figure 4. Now we label the edges as

2
n—(£—1) ifiiseven.

il if 7 is odd
flei) = {

Then for each vertex x of degree 2 other than u, it is easy to see that w(x) =
n+1orn+ 2 and

wi) = {”T” if n is odd

”T“ if n is even

For a vertex y of degree 4, w(y) = 2n + 2 or 2n + 4 or 2n + 3. This proves that f
induces 6 colors as required.

AN AN AN

<2 12><1 7><9 5>
6 8 10 4 11 3

NN N

Figure 5: A necklace graph G with y,,(G) = 3.

Let G be a necklace graph with ¢ edges and lengths of all the cycles be even.
Then G is bipartite. In [16], the authors proved that for a bipartite graph G with ¢

edges and two color classes x and vy, if number of vertices of colors z and y are | X|

and |Y'| respectively then x| X| = y|Y| = q(q—;l). Using this result one can obtain

the examples when x;,(G) > 2. We have given one such example in Figure 5. Here,
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q=12,|X| =6, Y| =4 and 4 1 (£LH q“ = 6 x 13). Therefore, its local antimagic
chromatic number is greater than 2. We have the labeling that induces 3 colors.
Hence, its local antimagic chromatic number is 3.

Notice that if all the cycles in a necklace graph G are of even length, then
X1a(G) > 2; otherwise, xi,(G) > 3.
4. Some Other Results

Arumugam et al. [1] and Premalatha et al. [19] studied the local antimagic
chromatic number of corona product P, o K,,, C,, o K,, and Setiawan et al. 20]
have studied it for corona product P,, o P;. The following theorem gives the bounds
on the local antimagic chromatic number of corona product G o K,, for any graph

G.

Theorem 4.1. Let G be a graph with p vertices and q edges such that x;,(G) =,
if m = p(mod 2), then mp +1 < x1(Go K,,)) <mp+ 7.

Proof. Since x;,(G) = r, there is a local antimagic bijection f: E — {1,2,...,q}
with r distinct weights. Further since m = p(mod 2), there exits a magic rectangle
M R(m, p) of order mxp. Let Cy, Cs, ..., C, be the p columns of the magic rectangle
MR(m,p). Let uy,us,...,u, be the vertices and ej, ey, ..., e, be the edges of the
graph G. Let v{ be the pendent vertices adjacent to the vertex u;, 1 < 57 < m,
1< <p.

We define an edge labeling g : G o K,, — {1,2,...,q 4+ mp} by g(&;) = f(e;)
and g(u;v]) = q+ ¢y, where ¢; ; is the (i, j)th entry of M R(m, p). Now, the weights
et 4 mg, wy(v]) = glun?). For
a fixed 4, wy(u;) > g(v!) = w,(v}). Thus, we have r 4+ mp distinct weights. Hence
Xia(G o K,,) < 7+ mp. Since there are mp pendent vertices, by Theorem 2.3,
Xta(G © K,,) > mp + 1. This proves the theorem.

The bound in Theorem 4.1 is not sharp, for example, x;,(G o K,,) > mp + 2
when G is a path on the p vertices (Theorem 2.14, [1]). Also, (K, o K,,) =
mn +n = |V(K, o K,)| for m > 2,n > 3. Therefore, the characterization of
graphs G on p vertices for which x;,(G o K,,) = mp + k, where 1 < k < mp is an
open problem and it will appear in the subsequent papers.

of the vertices under g are wy(u;) = wy(u;) +

We know that the order of a clique G’ of a graph G is the lower bound of x(G).
A similar result holds for local antimagic chromatic number, as illustrated in the
following lemma.

Lemma 4.2. If a graph G contains a k-clique then x,,(G) > k.

Proof. Let G’ be a k- clique in G and let f be a local antimagic labeling of G. Since
every vertex v; € G’ is adjacent to k — 1 other vertices and f is local antimagic
labeling of G, it follows that for every vertex pair v, v; € G', w(v;) # w(v;).
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Therefore the weights of the vertices of G’ under f are distinct, hence x;,(G) > k.

Lemma 4.3. Let G be a graph with vertex v such that deg(v) = A(G) > 2. Then,
there is a subgraph H of G' such that x;.(H) = A(G) + 1.

Proof. Let G be a graph with vertex v such that deg(v) = A(G). We consider a
subgraph H with vertex set {v,v; : vv; € E(G)} and edge set {vv; : vv; € E(G)}.
Since H is a star, y;.(H) = A(G) + 1.

We know that for a given subgraph H of a graph G, x(H) < x(G). But this
need not be the case for local antimagic chromatic numbers. Using Lemma 4.3,
we give some explicit examples where the inequality does not hold. Lau et. al [12]
calculated the local antimgaic chromatic number of a bipartite graph and wheel:

qg+1 ifg>p=1
Xia(Kpq) =1 2 if ¢ >p>2and p=qg(mod 2)
3 otherwise.

4 ifn=0or1or3(mod 4)

3 otherwise.

Xla(Wn) = {

For ¢ > p > 2 using the construction given in Lemma 4.3 with G = K, , we
obtain subgraph H of K,, with x,,(H) = ¢+ 1 > 3 > xja(K,,). Similarly for
G = W,, where n > 5, we obtain subgraph H of W,, such that y,.(H) =n+1 >
4 Z Xla(Wn)-

We pose the following problem.

Problem 1. Characterise graphs G that do not contain components K, such that
Xia(H) < x1a(G), for all connected subgraphs H (not containing K components)
of G.

The requirement for the subgraph to be connected is indispensable, as neglecting
it could lead to straightforward counterexamples. Such counterexamples arise from
graphs in the form of cycles of large lengths and subgraphs as the vertex-disjoint
union of paths. Additionally, considering Lemma 4.3, it’s intuitive to consider
graphs G where the maximum degree is less than x;,(G). However, this assumption
doesn’t hold true in all cases (see Example 2.5 in [15]).

5. Construction

In [2], the authors raised a question of characterising the graphs having the
same chromatic and local antimagic chromatic number. Since then, a few examples
are known where chromatic and local antimagic chromatic numbers are the same
(Example 2.5 in [15], Theorem 2.5 in [13]). The class of graphs having the same
chromatic number and local antimagic chromatic number is rich. In this section,
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we give a recursive method to construct infinitely many graphs {G;} such that
X(G;) = x1a(G;) from the given graph G with x(G) = xi.(G).

Construction:

Let G be a local antimagic graph with local antimagic labeling fy, such that
|E(G)| = myg satistying x;a(G) = x(G). Let |V(G)| = n > 4 be even.

Let ¢ be a positive integer and consider Go = G. For each ¢ > 1 consider
G; = Gio1 + K, where V(K,) = {u1,us,...,uq}. Observe that |E(G;)| = m +
i (n+(j —1)g)g =m; (say) and that

X(Gi) = x(Gi—1) + 1. (1)

First we show that x;.(G;) < Xx1.(Gi—1) + 1. Since we know that if n = g(mod 2),
n+ (i — 1)qg = q(mod 2) for each 7, then there exists a magic rectangle M R(n +
(1 — 1)q,q). Therefore, we assume that ¢ is even. Add m;_; to each entry of
MR(n+ (i—1)gq, q) to obtain a new magic rectangle M R’ of the same size in which
row sum (p), and column sum (o) are constant. Label the edges from u; to V(G;_1)
by ith column of M R'. Then w(u;) = o for each j and wg, (x) = we, ,(z)+p, Vo €
V(G,-1). Since ¢ is even, we can choose ¢ so that wg,(x) > w(u;) for all ¢ and j.
This proves that x;.(Gi) < x1a(Gi—1) + 1.

Now we show that x(G;) = x1a(G;) for each i using induction on . For i = 0,
the result is trivial. Suppose that the result is true for i =t i.e. x(Gt) = x1a(Gt).
Then

X(Gii1) = (G + Kq)
= X(Gt) +1
= Xia(Gy) +1
> Xi1a(Gis1)

and x(Gi1) = X(Gy) + 1 = x(Gy + K;) < x1a(Gt + K,). This proves x(Gy11) =
X1a(Gis1). Hence, by induction, the result is true for all # > 0. Thus, {G;}; is the
required sequence of graphs satisfying the property x(G;) = xi.(G;) for each i.

Now, we give an application of the above construction to calculate the local
antimagic chromatic number of r-partite graphs in a particular case. Let t; and ¢y
be two integers such that t; > to > 2 and ¢; = ta(mod 2). Then xa(Ky 1) = 2
(see, [12]). Since t; = to(mod 2) and n = t; + t5 is even, for each even t3, we have
Xia(Kt 1545) = 3. Recursively applying above construction for the suitable choices
of t;s, we obtain Xia(Ky, 1y,..0,) = 7 = XKt ts,...0,)-
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6. Conclusion and Scope

In this paper, we obtained the local antimagic chromatic number for the unions
of some graphs and some others. We have shown that there are infinitely many
graphs G for which x;,(G) = x(G), but a complete characterization has not yet
been discovered.
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