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Abstract: Consider a simple graph G without K2 component with vertex set V
and edge set E. A local antimagic labeling f of G is a one-to-one mapping of
edges to distinct positive integers 1, 2, . . . , |E| such that the weights of adjacent
vertices are distinct, where weight of a vertex is sum of labels assigned to the edges
incident to it. These weights of the vertex induced by local antimagic labeling
result in a proper vertex coloring of the graph G. The local antimagic chromatic
number of G, denoted as χla(G), as the smallest number of distinct weights ob-
tained across all possible local antimagic labelings of G. In this paper, we explore
the local antimagic chromatic numbers of various classes of graphs, including the
union of certain graph families, the corona product of graphs, and the necklace
graph. In addition, we provide constructions for infinitely many graphs for which
χla(G) equals the chromatic number χ(G) of the graph.

Keywords and Phrases: Antimagic Graph, Local Antimagic Graph, Local An-
timagic Chromatic Number.
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1. Introduction

The coloring problems in Graph Theory are one of the oldest, most widely
known, and unsolved problems in mathematics. They have been the central re-
search topic for centuries among graph theorists. All the graphs considered through-
out this paper are simple graphs without the K2 component. For graph theoretic
terminology and notations, we refer to West [21]. The standard definitions can also
be seen in Pirzada [18].

Hartsfield and Ringel [10] introduced the concept of antimagic labeling of a
graph. Given a graph G = (V,E), let f : E → {1, 2, . . . , |E|} be a bijection. For

each vertex u ∈ V , the weight of u induced by f is w(u) =
∑
uv∈E

f(uv). If the

induced weights under f of any two vertices of G are distinct, then f is called
antimagic labeling of G, and the graph G, which admits such labeling, is called an
antimagic graph.

Recently, Arumugam et al. [2] and Bensmail et al. [4] independently defined the
notion of local antimagic labeling of a graph that induces proper vertex coloring.
Arumugam et al. [2] studied the vertex coloring induced by local antimagic labeling.

An antimagic labeling f of a graph G is said to be local antimagic if the weights
induced by f of adjacent vertices are distinct. Local antimagic labeling naturally
induces a proper vertex coloring of a graph G. The local antimagic chromatic
number χla(G) of a graph G is the minimum number of colors used over all colorings
of G induced by local antimagic labeling of G [2].

In [2], the authors calculated the local antimagic chromatic number of a few
families of graphs viz path, cycle, wheel, etc. Furthermore, they conjectured that
every graph other than K2 is local antimagic. Haslegrave [11] proved this conjecture.

We will use magic rectangle and magic rectangle sets to obtain local antimagic
labelings of some graphs. A magic rectangle MR(a, b) is an array whose entries
are {1, 2, . . . , ab}, each appearing once, with all its row sums equal to a constant

ρ = b(ab+1)
2

and all its column sums equal to a constant σ = a(ab+1)
2

. Froncek [5, 6]
generalized the idea of magic squares to magic rectangle sets. A magic rectangle set
M = MRS(a, b; c) is a collection of c arrays (a× b) whose entries are elements of
{1, 2, . . . , abc}, each appearing once, with all row sums in every rectangle equals to

a constant ρ = b(abc+1)
2

and all column sums in every rectangle equal to a constant

σ = a(abc+1)
2

.

In this paper, we investigate the local antimagic chromatic numbers of the union
of some families of graphs, the corona product of graphs, the necklace graph, and
we construct infinitely many graphs satisfying χla(G) = χ(G).
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2. Known Results

The following century-old existing result due to Harmuth [8, 9] gives the nec-
essary and sufficient conditions for the existence of a magic rectangle of a given
order.

Theorem 2.1. [8, 9] A magic rectangle MR(a, b) exists if and only if a, b > 1,
ab > 4, and a ≡ b(mod 2).

Froncek [5, 6] proved the existence of MRS(a, b; c).

Theorem 2.2. [6] Let a, b, c be positive integers such that 1 < a ≤ b. Then a
magic rectangle set MRS(a, b; c) exists if and only if either a, b, c are all odd, or a
and b are both even, c is arbitrary, and (a, b) ̸= (2, 2).

Theorem 2.3. [17] Let G be a graph having k pendants. If G is not K2, then
χla(G) ≥ k + 1 and the bound is sharp.

Theorem 2.4. [3] Let G be a 4r-regular graph, r ≥ 1. Then for every positive
integer m,χla(mG) ≤ χla(G).

Theorem 2.5. [3] Let G be a (4r + 2)-regular graph, r ≥ 0, containing a 2-
factor consisting only of even cycles. Then for every positive integer m,χla(mG) ≤
χla(G).

3. Local Antimagic Labeling of Union of Graphs

With the knowledge of local antimagic chromatic numbers of various classes of
well-known graphs, the researchers started calculating local antimagic chromatic
numbers for graphs obtained from known graphs [1, 12, 14, 20]. Handa [7] started
by investing the local antimagic chromatic number of the union of paths, cycles,
and complete bipartite graphs.

Bača et al. [3] investigated independently the local antimagic chromatic number
and upper bounds for the union of paths, the union of cycles, the union of trees,
and other graphs and their proof techniques are different from the proof techniques
given in this paper.

The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
G = (V, E) with vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2.

Note that, if G1, G2, . . . , Gn are graphs such that χ(Gi) = χi then χ(
⋃

i Gi) =
max{χi : 1 ≤ i ≤ n}. We have the following observation for the local antimagic
chromatic number.

Observation 1. For the graphs G1, G2, . . . , Gn, χla(Gj) ≤ χla(
⋃

1≤i≤nGi) for each
j.

Theorem 3.1. The graph rPn is local antimagic with 3 ≤ χla(rPn) ≤ 2r + 2.
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Proof. Let V (rPn) = {vji : 0 ≤ j ≤ r − 1, 0 ≤ i ≤ n− 1} be the vertex set of rPn,
where for each j, vj0, v

j
1, . . . , v

j
n−1 is a path. The lower bound is obvious from the

Observation 1. For the upper bound, we consider the following two cases.
Case 1: n is even.
We define edge labeling f : E → {1, 2, . . . , nr − r} as follow:

f(vji v
j
i+1) =


(r − j

2
)(n− 1)− i

2
if i, j ≡ 0(mod 2)

j
2
(n− 1) + i+1

2
if i ≡ 1(mod 2), j ≡ 0(mod 2)

(j−1)
2

(n− 1) + i+1
2

+ n−1
2

if i ≡ 0(mod 2), j ≡ 1(mod 2)

(r − j−1
2
)(n− 1)− i−1

2
− n

2
if i, j ≡ 1(mod 2).

Then the induced vertex weights are as follows:
i ̸= 0 and i ̸= n− 1,

w(vji ) =

{
r(n− 1) if i ≡ j(mod 2)

r(n− 1) + 1 if i ̸≡ j(mod 2).

For i = 0

w(vj0) =

{
(r − j

2
)(n− 1) if j ≡ 0(mod 2)

(n− 1)( j−1
2
) + n

2
if j ≡ 1(mod 2).

For i = n− 1

w(vjn−1) =

{
r− j

2

2
(n− 1)− n−2

2
if j ≡ 0(mod 2)

(n− 1)( j+1
2
) if j ≡ 1(mod 2).

Case 2: n is odd.

We define edge labeling f : E → {1, 2, . . . , nr − r} as follow:

f(vji v
j
i+1) =

{
r(n− 1)− j(n−1)

2
− i

2
if i ≡ 0(mod 2)

j(n−1)
2

+ i+1
2

if i ≡ 1(mod 2).

The induced vertex weights are as follows: i ̸= 0 and i ̸= n− 1,

w(vji ) =

{
r(n− 1) if i ≡ 0(mod 2)

r(n− 1) + 1 if i ≡ 1(mod 2).

w(vji ) =

{
r(n− 1)− j(n−1)

2
if i = 0

(n−1
2
)(j + 1) if i = n− 1.
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Since we have 2r+2 distinct vertex weights, we conclude that χla(rPn) ≤ 2r+2.
Next, we investigate the local antimagic chromatic number for the union of

cycles. Let the vertex set of rCn be V (rCn) = {vji : 1 ≤ j ≤ r, 0 ≤ i ≤ n − 1}
where for each j, vj0, v

j
1, . . . , v

j
n−1 is a cycle of length n.

Lemma 3.2. If n is even then the graph rCn is local antimagic with χla(rCn) = 3.
Proof. By Observation 1, χla(Cn) = 3 ≤ χla(rCn). So, it is sufficient to give
a local antimagic labeling that induces exactly 3 distinct weights. Consider the
following edge labeling f : E → {1, 2, ..., |E|} as

f(vji v
j
i+1) =

{
(j−1)n

2
+ i

2
+ 1 if i ≡ 0(mod 2)

rn− (j−1)n
2

− i−1
2

if i ≡ 1(mod 2)

Then, the induced vertex weights are as follows

w(vji ) =


rn+ 1 if i ≡ 1(mod 2), i ̸= 0

rn+ 2 if i ≡ 0(mod 2), i ̸= 0

rn+ 4−n
2

if i = 0

Hence, f is local antimagic labeling, and it induces 3 weights. Therefore, χla(rCn) ≤
3. Hence, χla(rCn) = 3 when n is even. This completes the proof.

The illustration of local antimagic labeling of 2C6 is shown in Figure 1.

b
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Figure 1: A local antimagic labeling of 2C6 with χla(2C6) = 3.

We give an upper bound on the local antimagic chromatic number for the union
of odd-length cycles.

Lemma 3.3. If n is odd then the graph rCn is local antimagic with χla(rCn) ≤ r+2.
Proof. We define a local antimagic labeling f : E → {1, 2, . . . , nr} as

f(vji v
j
i+1) =


jn
2
+ i

2
+ 1 if i ≡ 0(mod 2), j ≡ 0(mod 2)

(r − j
2
)n− i−1

2
if i ≡ 1(mod 2), j ≡ 0(mod 2)

(r − (j−1)
2

)n− i
2
− (n−1)

2
if i ≡ 0(mod 2), j ≡ 1(mod 2)

( j−1
2
)n+ i+1

2
+ n+1

2
if i ≡ 1(mod 2), j ≡ 1(mod 2).
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Then, the induced vertex weights are as follows:
for i ̸= 0

w(vji ) =

{
rn+ 2 if i ≡ j(mod 2)

rn+ 1 if i ̸≡ j(mod 2).

and for i = 0

w(vji ) =

{
nj + n+3

2
if j ≡ 0(mod 2)

2n(r − j−1
2
)− 3

2
(n− 1) if j ≡ 1(mod 2).

Since we have r+2 distinct vertex weights, we conclude that χla(rCn) ≤ r+2.
From Lemmas 3.2 and 3.3, we have the following theorem.

Theorem 3.4. For n ≥ 3 the local antimagic chromatic number 3 ≤ χla(rCn) ≤
r + 2.

Let rK1,n denotes r copies of a star K1,n. Let u1, u2, . . . , ur be the r central
vertices of rK1,n. Let vi,1, vi,2, . . . , vi,n be n pendant vertices adjacent to the central
vertex ui. Note that deg(ui) = n and |E(rK1,n)| = rn.

Lemma 3.5. For r ≥ 1 and for even n the χla(rK1,n) = rn+ 1.
Proof. Define an edge labeling f : E → {1, 2, . . . , rn} as:

f(uivi,j) =

{
(i− 1)n

2
+ j if 1 ≤ j ≤ n

2

rn− (n− j)− (i− 1)n
2

if n
2
+ 1 ≤ j ≤ n.

Therefore, the vertex weights are, w(vi,j) = f(uivi,j)) and w(ui) = n
2
(mn + 1).

Since pendant vertices contribute rn distinct colors and each ui, 1 ≤ i ≤ n, has the
same weight, the total number of distinct weights is rn+ 1.

Lemma 3.6. For odd r ≥ 1 and for odd n, χla(rK1,n) = rn+ 1.
Proof. Since both r and n are odd, then by Theorem 2.1, there exists a magic
rectangle MR(n, r) of order n × r. Let C1, C2, . . . , Cr be the r columns of the
magic rectangle MR(n, r). Now we define a bijection f : E → {1, 2, . . . , nr} as
f(uivi,j) = Cij, where Cij is the jth entry of the ith column Ci. The vertex weights

are, w(ui) = n(nr+1)
2

, 1 ≤ i ≤ r and w(vi,j) = f(uivi,j). Since pendant vertices
contribute rn distinct colors and each ui, 1 ≤ i ≤ n has the same weight, the total
number of distinct weights are nr + 1. Hence χla(rK1,n) = nr + 1.

Lemma 3.7. For even r ≥ 2 and n ≡ 1(mod 2), χla(rK1,n) = nr + 2.
Proof. Since n ≡ 1(mod 2) and r ≡ 0(mod 2), then n ≡ r − 1 ≡ 1(mod 2).
Therefore by Theorem 2.1, there exists n×r−1 magic rectangle MR(n, r−1). Let
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C1, C2, . . . , Cr−1 be the columns ofMR(n, r−1). We label the edges in the first r−1
copies of K1,n using respective columns C1, C2, . . . , Cr−1. Label the edges in the rth

copy of K1,n using the remaining set of labels {n(r − 1) + 1, n(r − 1) + 2, . . . , nr}.
Now

∑n
i=1 n(r − 1) + i = n2(r − 1) + n(n+1)

2
. The pendant vertices of G induce

nr distinct weights. For the support vertices {u1, u2, . . . , ur}, the weights are as
follows:

w(ui) =

{
n2(r−1)+1

2
if i = 1, 2, . . . , r − 1

n2(r − 1) + n(n+1)
2

if i = r

The total number of distinct weights under this labeling is nr + 2. Hence we
conclude that χla(rK1,n) = rn+ 2.

The illustration of the local antimagic coloring of 3K1,3 is shown in Figure 2.

Figure 2: A local antimagic labeling of 3K1,3 with χla(3K1,3) = 3× 3 + 1.

The following theorem is evident from Lemmas 3.5, 3.6 and 3.7.

Theorem 3.8. rn+ 1 ≤ χla(rK1,n) ≤ rn+ 2.

The chromatic number of a complete graph on n vertices is n. It is easy to
observe and prove that χla(Kn) = n = χ(Kn). Moreover, with some conditions on
n, we have proved that χla(mKn) = n.

Proposition 3.9. For n ≥ 3, χla(Kn) = n.
Proof. Let V (Kn) = {v1, v2, . . . , vn} and for each 1 ≤ j ≤ n and j < i ≤ n

let ei−1 = vjvi. Define edge labeling f by f(ei) = (j − 1)n − j(j−1)
2

+ 1. It is
easy to observe that the weights, w(v1), . . . , w(vn) are in increasing order. Hence,
χla(Kn) ≤ n = χ(Kn). This proves the proposition.

Proposition 3.10. For n ≥ 3, n ≡ 1 or 3(mod 4), χla(mKn) = n.
Proof. Let n ≥ 3. If n ≡ 1 (mod 4) then Kn is 4r-regular for some r ≥ 1 and
proof follows by Theorem 2.4. If n ≡ 3 (mod 4) then Kn is (4r + 2)-regular for
some r ≥ 1 and it contains (n− 1) even spanning cycles. Hence, the proof follows
by Theorem 2.5.
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Theorem 3.11. Let χla(rKm,n) = 2 if positive integers m, n, r with m ̸= n
satisfies one of the following conditions:

1. 1 < m ≤ n with m and n both even, r ≥ 1, and (m,n) ̸= (2, 2).

2. 1 < m ≤ n and m,n, r are all odd.

Proof. By Theorem 2.2 on the existence of magic rectangle sets, we have the
existence of MRS(m,n; r) for each of the above cases. Suppose there is a magic
rectangle set MRS(m,n; r). Let M1,M2, . . . ,Mr denotes the r magic rectangles
in MRS(m,n; r). For 1 ≤ k ≤ r, define the vertex set of kth copy of Km,n as
V = {vki , wk

j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, where {vki : 1 ≤ i ≤ m} and {wk
i : 1 ≤ i ≤ n}

form the respective partite sets of kth copy of Km,n.
Now for each k (1 ≤ k ≤ r) and each i (1 ≤ i ≤ n) we label the edge set {vki wk

j :
1 ≤ j ≤ m} with the numbers in the ith row of Mk. Since the sum of elements
in any row or column in the magic rectangle set is equal, the resulting labelling
is a local antimagic that induces 2 different colors. Therefore, χla(rKm,n) ≤ 2.
Also, χ(rKm,n) = 2. We conclude that χla(rKm,n) = 2 whenever there exists a
MRS(m,n; r).

Figure 3 illustrates the local antimagic labeling of 3K2,4.

Figure 3: A local antimagic labeling of 3K2,4 with χla(3K2,4) = 2.

e1

e2

e3 e4 e5 e6 e7

e8e9e10e11e12

e13

e14

u v

Figure 4: A u, v-necklace graph.
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An interesting class of graphs called a necklace graph has common vertices. A
u, v-necklace is a list of cycles C1, C2, . . . , Ct such that u ∈ C1, v ∈ Ct, consecutive
cycles share exactly one vertex, and non-consecutive cycles are disjoint (see Figure
4). The number of edges in all cycles is known as the length of the necklace. We
provide an upper bound for the local antimagic chromatic number for this class of
graph.

Theorem 3.12. Let G be an u, v-necklace on t ≥ 2 cycles such that G has no
adjacent vertices of degree 4. Then χla(G) ≤ 6.
Proof. Let G be an u, v-necklace of length n, where Ci be a cycle of length ni for
1 ≤ i ≤ t. By the definition of G, we have an Eulerian tour traversed clockwise
starting and ending at u. We enumerate the edges of G as we follow the Eulerian
tour as shown in Figure 4. Now we label the edges as

f(ei) =

{
i+1
2

if i is odd

n− ( i
2
− 1) if i is even.

Then for each vertex x of degree 2 other than u, it is easy to see that w(x) =
n+ 1 or n+ 2 and

w(u) =

{
n+3
2

if n is odd
n+4
2

if n is even

For a vertex y of degree 4, w(y) = 2n+ 2 or 2n+ 4 or 2n+ 3. This proves that f
induces 6 colors as required.

2 1212 1 7 9 5

31141086

Figure 5: A necklace graph G with χla(G) = 3.

Let G be a necklace graph with q edges and lengths of all the cycles be even.
Then G is bipartite. In [16], the authors proved that for a bipartite graph G with q
edges and two color classes x and y, if number of vertices of colors x and y are |X|
and |Y | respectively then x|X| = y|Y | = q(q+1)

2
. Using this result one can obtain

the examples when χla(G) > 2. We have given one such example in Figure 5. Here,



10 South East Asian J. of Mathematics and Mathematical Sciences

q = 12, |X| = 6, |Y | = 4 and 4 ∤ ( q(q+1)
2

= 6 × 13). Therefore, its local antimagic
chromatic number is greater than 2. We have the labeling that induces 3 colors.
Hence, its local antimagic chromatic number is 3.

Notice that if all the cycles in a necklace graph G are of even length, then
χla(G) ≥ 2; otherwise, χla(G) ≥ 3.

4. Some Other Results

Arumugam et al. [1] and Premalatha et al. [19] studied the local antimagic
chromatic number of corona product Pn ◦Km, Cn ◦Km and Setiawan et al. [20]
have studied it for corona product Pm◦Pk. The following theorem gives the bounds
on the local antimagic chromatic number of corona product G ◦Km for any graph
G.

Theorem 4.1. Let G be a graph with p vertices and q edges such that χla(G) = r,
if m ≡ p(mod 2), then mp+ 1 ≤ χla(G ◦Km) ≤ mp+ r.
Proof. Since χla(G) = r, there is a local antimagic bijection f : E → {1, 2, . . . , q}
with r distinct weights. Further since m ≡ p( mod 2), there exits a magic rectangle
MR(m, p) of orderm×p. Let C1, C2, . . . , Cp be the p columns of the magic rectangle
MR(m, p). Let u1, u2, . . . , up be the vertices and e1, e2, . . . , eq be the edges of the
graph G. Let vji be the pendent vertices adjacent to the vertex ui, 1 ≤ j ≤ m,
1 ≤ i ≤ p.

We define an edge labeling g : G ◦ Km → {1, 2, . . . , q + mp} by g(ei) = f(ei)
and g(uiv

j
i ) = q+cij, where ci,j is the (i, j)th entry of MR(m, p). Now, the weights

of the vertices under g are wg(ui) = wf (ui) +
m(mp+1)

2
+mq, wg(v

j
i ) = g(uiv

j
i ). For

a fixed i, wg(ui) > g(vji ) = wg(v
j
i ). Thus, we have r +mp distinct weights. Hence

χla(G ◦ Km) ≤ r + mp. Since there are mp pendent vertices, by Theorem 2.3,
χla(G ◦Km) ≥ mp+ 1. This proves the theorem.

The bound in Theorem 4.1 is not sharp, for example, χla(G ◦ Km) ≥ mp + 2
when G is a path on the p vertices (Theorem 2.14, [1]). Also, χla(Kn ◦ Km) =
mn + n = |V (Kn ◦ Km)| for m ≥ 2, n ≥ 3. Therefore, the characterization of
graphs G on p vertices for which χla(G ◦Km) = mp + k, where 1 ≤ k ≤ mp is an
open problem and it will appear in the subsequent papers.

We know that the order of a clique G′ of a graph G is the lower bound of χ(G).
A similar result holds for local antimagic chromatic number, as illustrated in the
following lemma.

Lemma 4.2. If a graph G contains a k-clique then χla(G) ≥ k.
Proof. Let G′ be a k- clique in G and let f be a local antimagic labeling of G. Since
every vertex vi ∈ G′ is adjacent to k − 1 other vertices and f is local antimagic
labeling of G, it follows that for every vertex pair vi, vj ∈ G′, w(vi) ̸= w(vj).
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Therefore the weights of the vertices of G′ under f are distinct, hence χla(G) ≥ k.

Lemma 4.3. Let G be a graph with vertex v such that deg(v) = ∆(G) ≥ 2. Then,
there is a subgraph H of G such that χla(H) = ∆(G) + 1.
Proof. Let G be a graph with vertex v such that deg(v) = ∆(G). We consider a
subgraph H with vertex set {v, vi : vvi ∈ E(G)} and edge set {vvi : vvi ∈ E(G)}.
Since H is a star, χla(H) = ∆(G) + 1.

We know that for a given subgraph H of a graph G, χ(H) ≤ χ(G). But this
need not be the case for local antimagic chromatic numbers. Using Lemma 4.3,
we give some explicit examples where the inequality does not hold. Lau et. al [12]
calculated the local antimgaic chromatic number of a bipartite graph and wheel:

χla(Kp,q) =


q + 1 if q > p = 1

2 if q > p ≥ 2 and p ≡ q(mod 2)

3 otherwise.

χla(Wn) =

{
4 if n ≡ 0 or 1 or 3(mod 4)

3 otherwise.

For q > p ≥ 2 using the construction given in Lemma 4.3 with G ∼= Kp,q we
obtain subgraph H of Kp,q with χla(H) = q + 1 > 3 ≥ χla(Kp,q). Similarly for
G ∼= Wn, where n ≥ 5, we obtain subgraph H of Wn such that χla(H) = n + 1 >
4 ≥ χla(Wn).

We pose the following problem.

Problem 1. Characterise graphs G that do not contain components K2 such that
χla(H) ≤ χla(G), for all connected subgraphs H (not containing K2 components)
of G.

The requirement for the subgraph to be connected is indispensable, as neglecting
it could lead to straightforward counterexamples. Such counterexamples arise from
graphs in the form of cycles of large lengths and subgraphs as the vertex-disjoint
union of paths. Additionally, considering Lemma 4.3, it’s intuitive to consider
graphs G where the maximum degree is less than χla(G). However, this assumption
doesn’t hold true in all cases (see Example 2.5 in [15]).

5. Construction
In [2], the authors raised a question of characterising the graphs having the

same chromatic and local antimagic chromatic number. Since then, a few examples
are known where chromatic and local antimagic chromatic numbers are the same
(Example 2.5 in [15], Theorem 2.5 in [13]). The class of graphs having the same
chromatic number and local antimagic chromatic number is rich. In this section,
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we give a recursive method to construct infinitely many graphs {Gi} such that
χ(Gi) = χla(Gi) from the given graph G with χ(G) = χla(G).

Construction:
Let G be a local antimagic graph with local antimagic labeling f0 such that

|E(G)| = m0 satisfying χla(G) = χ(G). Let |V (G)| = n ≥ 4 be even.
Let q be a positive integer and consider G0 = G. For each i ≥ 1 consider

Gi = Gi−1 + Kq, where V (Kq) = {u1, u2, . . . , uq}. Observe that |E(Gi)| = m +∑i
j=1(n+ (j − 1)q)q = mi (say) and that

χ(Gi) = χ(Gi−1) + 1. (1)

First we show that χla(Gi) ≤ χla(Gi−1) + 1. Since we know that if n ≡ q(mod 2),
n + (i − 1)q ≡ q(mod 2) for each i, then there exists a magic rectangle MR(n +
(i − 1)q, q). Therefore, we assume that q is even. Add mi−1 to each entry of
MR(n+(i−1)q, q) to obtain a new magic rectangle MR′ of the same size in which
row sum (ρ), and column sum (σ) are constant. Label the edges from uj to V (Gi−1)
by ith column of MR′. Then w(uj) = σ for each j and wGi

(x) = wGi−1
(x)+ρ, ∀x ∈

V (Gi−1). Since q is even, we can choose q so that wGi
(x) > w(uj) for all i and j.

This proves that χla(Gi) ≤ χla(Gi−1) + 1.
Now we show that χ(Gi) = χla(Gi) for each i using induction on i. For i = 0,

the result is trivial. Suppose that the result is true for i = t i.e. χ(Gt) = χla(Gt).
Then

χ(Gt+1) = χ(Gt +Kq)

= χ(Gt) + 1

= χla(Gt) + 1

≥ χla(Gt+1)

and χ(Gt+1) = χ(Gt) + 1 = χ(Gt +Kq) ≤ χla(Gt +Kq). This proves χ(Gt+1) =
χla(Gt+1). Hence, by induction, the result is true for all i ≥ 0. Thus, {Gi}i is the
required sequence of graphs satisfying the property χ(Gi) = χla(Gi) for each i.

Now, we give an application of the above construction to calculate the local
antimagic chromatic number of r-partite graphs in a particular case. Let t1 and t2
be two integers such that t1 > t2 ≥ 2 and t1 ≡ t2(mod 2). Then χla(Kt1,t2) = 2
(see, [12]). Since t1 ≡ t2(mod 2) and n = t1 + t2 is even, for each even t3, we have
χla(Kt1,t2,t3) = 3. Recursively applying above construction for the suitable choices
of tis, we obtain χla(Kt1,t2,...,tr) = r = χ(Kt1,t2,...,tr).
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6. Conclusion and Scope
In this paper, we obtained the local antimagic chromatic number for the unions

of some graphs and some others. We have shown that there are infinitely many
graphs G for which χla(G) = χ(G), but a complete characterization has not yet
been discovered.
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